Abstract

It is known that the surface plasmons (SPs) supported by graphene can be strongly coupled with electric SPs supported by the metamaterial and with symmetric and antisymmetric surface phonon polaritons (SPhPs) supported by silicon carbide (SiC). It has been shown that coated SiC thin films can efficiently enhance near-field radiative heat transfer between metamaterials. In this study, we theoretically investigate near-field heat transfer between graphene–SiC–graphene–metamaterial (GSGM) multilayer structures. The heat transfer between GSGM structures is significantly larger than that between SiC-coated metamaterials when the chemical potential of graphene is not very high. Moreover, the structure proposed in this study behaves much better than the previous SiC/graphene/metamaterial in enhancing the near-field radiative heat transfer. The findings in this study provide a basis for active controlling of near-field radiative heat transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call