Abstract

We propose a control strategy for the simultaneous suppression and confinement of vibrations in linear time-varying structures. The proposed controller has time-varying gains and can also be used for linear time-invariant systems. The key idea is to alter the original modes by appropriate feedback forces to allow parts of the structure reach their steady states at faster rates. It is demonstrated that the convergence of these parts to zero is improved at the expense of slowing down the settling of the remaining parts to their steady states. The proposed control strategy can be applied for the rapid removal of vibration energy in sensitive parts of a flexible structure for safety or performance reasons. The stability of the closed-loop system is proven through a Lyapunov approach. An illustrative example of a five-link manipulator with a periodic follower force is given to demonstrate the effectiveness of the method for time-varying as well as time-invariant systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call