Abstract

Vibration caused by friction is harmful to engineering systems. Understanding the mechanism of such a physical phenomenon and developing some strategies to effectively control the vibration have both theoretical and practical significance. Based on our previous work, this paper deals with a problem of active compensation control of friction-induced self-excited vibration using adaptive fuzzy systems. Comparative studies on control performance are carried out, where a class of adaptive compensation control schemes with various friction models are applied to control a motion dynamics with friction. It is observed that our proposed modeling and control techniques are powerful to eliminate the limit cycle and the steady-state error. Furthermore, robustness of the proposed controller with respect to external disturbances is discussed. Simulation results show that the active controller with adaptive fuzzy friction compensation outperforms other active controllers with compensation terms characterized by three well-known friction models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call