Abstract

We perform large-eddy simulation of turbulent flow separation over an airfoil and evaluate the effectiveness of synthetic jets as a separation control technique.The flow configuration consists of flow over a NACA 0015 airfoil at Reynolds number of 896,000 based on the airfoil chord length and freestream velocity.A small slot across the entire span connected to a cavity inside the airfoil is employed to produce oscillatory synthetic jets.Detailed flow structures inside the synthetic-jet actuator and the synthetic jet/cross-flow interaction are simulated using an unstructured-grid finite-volume large-eddy simulation solver.Simulation results are compared with the experimental data of Gilarranz et al.(J.Fluids Eng.127, pp.377–387 (2005)), and qualitative and quantitative agreements are obtained for both uncontrolled and controlled cases.As in the experiment, the present large-eddy simulation confirms that synthetic-jet actuation effectively delays the onset of flow separation and causes a significant increase in the lift coefficient.Modification of the blade boundary layer due to oscillatory blowing and suction and its role in separation control is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call