Abstract

This paper presents an experimental investigation on active control of the elastodynamic response of a four-bar (4R) mechanism system using “smart” materials featuring piezoelectric sensor/actuator (S/A) pairs and multivariable optimal control. The experimental 4R mechanism is made such that its coupler link is flexible, its follower link is slightly less flexible and its crank is relatively rigid. Two thin plate-type piezoceramic S/A pairs are bonded to the flanks of the coupler link at the high strain locations corresponding to the first and second vibration modes. Based on the optimal multivariable control theory, a controller which consists of a linear quadratic regulator (LQR) and a Luenberger observer as a state estimator is designed and implemented. The results of the experimental investigation prove that in order to prevent high mode excitations, the controller design should be based on the modes representing vibrations of all components comprising the mechanism system rather than the modes corresponding to the link to which the S/A pairs are bonded. Response amplitude attenuation ratios up to 50 percent are achieved and high mode excitations are prevented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call