Abstract

In this paper, we present two successful results from active controls of flows over a circular cylinder and a sphere for drag reduction. The Reynolds number range considered for the flow over a circular cylinder is 40∼3900 based on the free-stream velocity and cylinder diameter, whereas for the flow over a sphere it is 105 based on the free-stream velocity and sphere diameter. The successful active control methods are a distributed (spatially periodic) forcing and a high-frequency (time periodic) forcing. With these control methods, the mean drag and lift fluctuations decrease and vortical structures are significantly modified. For example, the time-periodic forcing with a high frequency (larger than 20 times the vortex shedding frequency) produces 50% drag reduction for the flow over a sphere at Re = 105. The distributed forcing applied to the flow over a circular cylinder results in a significant drag reduction at all the Reynolds numbers investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.