Abstract

A regional power grid containing high-density wind power is generally connected to a load centre through long-distance transmission lines. Voltage problems, caused by wind speed fluctuation, in the sending-end grid have become increasingly serious. The variable speed wind turbine has been used to compensate the deficit in reactive power. However, the available methods could not meet the requirement because the controllable range of reactive power contributed by wind farms cannot be adjusted. A new idea of reactive power control realised by the active control before wind speed fluctuation was proposed to prevent the voltage variation. Firstly, the influence of wind speed fluctuation on voltage was analysed, and the power controllable range of wind turbines was studied. The principle and strategy of the active control of reactive power were proposed based on the model predictive control theory. Then, the active control model was established according to the system dynamic demand for reactive power. According to wind speed forecasting, the reactive control capability of wind turbine was excavated to meet the grid demand by adjusting active power before wind speed variation, and the reduced active power of wind farms is optimally compensated by thermal powers. Finally, the method was proven to solve voltage problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.