Abstract

Plume are common physical phenomena in fiber laser keyhole welding and have serious negative effects on the welding process. Based on this, this paper explores the regulation law of conventional shielding gas flow on plume. The results show that the shielding gas has a very significant effect on the suppression of the slender part of the plume, and the greater the gas flow rate, the better the plume removal effect. The addition of the shielding gas makes the welding process more stable, the molten pool flows stably, and the frequency of spatter eruption is reduced. Under the experimental conditions, the optimal shielding gas flow rate is around 15 l/min, and the penetration depth and width are increased by about 10% and decreased by about 22%, respectively, compared with that without adding the shielding gas. Based on the gas flow simulation, the gas flow pressure (about 132 Pa) generated by an appropriate amount of shielding gas (about 15 l/min) can press the liquid column and spatter near the keyhole mouth into the molten pool to avoid the spatter eruption. Excessive shielding gas flow will interfere with the flow of the molten pool excessively, and the weld surface will show a serious undercut phenomenon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.