Abstract
This paper presents a new region-based active contour model in a variational level set formulation for image segmentation. In our model, the local image intensities are described by Gaussian distributions with different means and variances. We define a local Gaussian distribution fitting energy with a level set function and local means and variances as variables. The energy minimization is achieved by an interleaved level set evolution and estimation of local intensity means and variances in an iterative process. The means and variances of local intensities are considered as spatially varying functions to handle intensity inhomogeneities and noise of spatially varying strength (e.g. multiplicative noise). In addition, our model is able to distinguish regions with similar intensity means but different variances. This is demonstrated by applying our method on noisy and texture images in which the texture patterns of different regions can be distinguished from the local intensity variance. Comparative experiments show the advantages of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.