Abstract
In this work, a new and efficient terahertz reflective phase shifter is proposed. The phase shifter is composed of a metal-dielectric-metal structure with a double dipole patch array, as well as copper grating electrodes immersed within the nematic liquid crystal. More specifically, the employed copper grating electrodes consist of two sets of cross-distributed comb grids, whereas at each set of comb grids can be applied an external bias voltage separately. On top of that, the electric field in the liquid crystal (LC) layer can be continuously changed by enforcing an innovative technique. Consequently, the orientation of the LC molecules was fully controlled by the applied electric field, since the dielectric constant of the LC is controlled by the biased voltage. The phase of the reflective electromagnetic wave can be continuously manipulated. Under this direction, the experimental results show that the phase shift exceeds the value of 180° in the range of 102.5 GHz-104.3 GHz, where the maximum phase shift is 249° at 103 GHz. The proposed work provides a new regulation concept for the implementation of LC-based terahertz devices and the respective applications in the terahertz reconfigurable antennas field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.