Abstract

Constrained clustering has recently become an active research topic. This type of clustering methods takes advantage of partial knowledge in the form of pairwise constraints, and acquires significant improvement beyond the traditional un-supervised clustering. However, most of the existing constrained clustering methods use constraints which are selected at random. Recently active constrained clustering algorithms utilizing active constraints have proved themselves to be more effective and efficient. In this paper, we propose an improved algorithm which introduces multiple representatives into constrained clustering to make further use of the active constraints. Experiments on several benchmark data sets and public image data sets demonstrate the advantages of our algorithm over the referenced competitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.