Abstract

While preventive and predictive maintenance have played their part in engine health monitoring, the problem of downtime maintenance has truly reached a serious level. Also, most companies have found out that their maintenance costs can be cut drastically by establishing a proactive line of defence. Most imminent faults in gas turbines often result from the vibration of the rotor shaft of the engine. Some of these faults that could lead to catastrophy include misalignment, imbalance, cracks and eccentricity. These defects are equally likely to lead to unscheduled downtime resulting to large economic losses. It is on this backdrop that the rotor shaft of a marine gas turbine system was isolated and used for condition monitoring to enunciate methods to reduce downtime. The need to study vibration which is one of the biggest threats to rotating equipment has become much required now than ever before. This project thus presents a case to monitor the condition of the gas turbine through its thermodynamic and rotor shaft vibration analyses. Selected measurements from an industrial gas turbine to detect changes in operating conditions of the plant were of immense help in setting the proactive measures for the plant. Simulation and analysis were achieved using high level java computer programming language and data collected from a gas turbine plant. The work shows that vibration reduces the active load of the engine. Thus, proactive maintenance monitoring programs should be employed in gas turbine usage to avoid the effects of vibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.