Abstract

The new frontier in the quest for the highest contrast levels in the focal plane of a coronagraph is now the correction of the large diffractive artifacts effects introduced at the science camera by apertures of increasing complexity. The coronagraph for the WFIRST/AFTA mission will be the first of such instruments in space with a two Deformable Mirrors wavefront control system. Regardless of the control algorithm for these multi Deformable Mirrors, they will have to rely on quick and accurate simulation of the propagation effects introduced by the out-of-pupil surface. In the first part of this paper, we present the analytical description of the different approximations to simulate these propagation effects. In Annex A, we prove analytically that, in the special case of surfaces inducing a converging beam, the Fresnel method yields high fidelity for simulations of these effects. We provide numerical simulations showing this effect. In the second part, we use these tools in the framework of the Active Compensation of Aperture Discontinuities technique (ACAD) applied to pupil geometries similar to WFIRST-AFTA. We present these simulations in the context of the optical layout of the High-contrast imager for Complex Aperture Telescopes, which will test ACAD on a optical bench. The results of this analysis show that using the ACAD method, an apodized pupil lyot coronagraph and the performance of our current deformable mirrors, we are able to obtain, in numerically simulations, a dark hole with an AFTA-like pupil. Our numerical simulation shows that we can obtain contrast better than $2.10^{-9}$ in monochromatic light and better than 3.e-8 with 10% bandwidth between 5 and 14 lambda/D.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call