Abstract

We study the motion of active Janus colloids in an optical trap using experiments, theory and numerical simulations. To achieve isotropic and harmonic confinement, we prototype microparticles with a nearly uniform refractive index and verify that, in the absence of activity, the confined motion is identical to that of optically homogeneous Brownian particles. If the activity is turned on by means of vertical AC fields, the density distributions are described by Boltzmann-like statistics (Gaussian with effective temperature) only for strongly confining traps, whereas weaker potentials give rise to non-Gaussian distributions with a bimodal shape. Our results showcase a simple way to study active soft matter in optical potential landscapes eliminating the optical torque.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call