Abstract

We review recent experimental, numerical, and analytical results on active suspensions of self-propelled colloidal beads moving in (quasi-)two dimensions. Active colloids form part of the larger theme of active matter, which is noted for the emergence of collective dynamic phenomena away from thermal equilibrium. Both in experiments and computer simulations, a separation into dense aggregates, i.e., clusters, and a dilute gas phase has been reported even when attractive interactions and an alignment mechanism are absent. Here, we describe three experimental setups, discuss the different propelling mechanisms, and summarize the evidence for phase separation. We then compare experimental observations with numerical studies based on a minimal model of colloidal swimmers. Finally, we review a mean-field approach derived from first principles, which provides a theoretical framework for the density instability causing the phase separation in active colloids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.