Abstract
In this paper, we propose a novel classification method involving two processing steps. Given a test sample, the training data residing to its neighborhood are determined. Classification is performed by a Single-hidden Layer Feedforward Neural network exploiting labeling information of the training data appearing in the test sample neighborhood and using the rest training data as unlabeled. By following this approach, the proposed classification method focuses the classification problem on the training data that are more similar to the test sample under consideration and exploits information concerning to the training set structure. Compared to both static classification exploiting all the available training data and dynamic classification involving data selection for classification, the proposed active classification method provides enhanced classification performance in two publicly available action recognition databases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.