Abstract

Metal-oxide-silicon (MOS)-gate-structure-based power semiconductors, such as MOS field-effect transistors, insulated-gate bipolar transistors, and MOS controlled thyristors, are widely used as high-voltage switch and power modulator components in pulsed-power applications. The power semiconductors are generally connected in series and in parallel in order to increase their maximum switching voltage and current, respectively. It is important to suppress overvoltage or switching stress on power semiconductors connected in series and parallel during an extremely short switching time and at fast operating frequency. Generally, gate drive control techniques and methods for the suppression of high voltage are required. To suppress overvoltage and switching stress, this paper proposes a simple and effective active clamping method rather than the use of a snubber circuit with free switching condition modulation. Based on comparative switching experiments, the active clamping method is expected to suppress switching stress and overvoltage while load and switching conditions are changed without modification of the high-side auxiliary circuit for pulsed-power applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.