Abstract
Bridging homogeneous and heterogeneous catalysis is a long-term pursuit in the field of catalysis. Herein, we report our results in integration of nano- and molecular catalysis via catalytic synthesis of nitrogen doped carbon layers on AlOx supported nano-Cu which can finely tune the catalytic performance of the supported copper catalyst. This synthetic catalytic material, which can be generated in situ by the reaction of CuAlOx and 1,10-Phen in the presence of hydrogen, could be used for controllable synthesis of N,N-dimethylformamide (DMF) from dimethylamine and CO2/H2 via blocking reaction pathways of further catalytic hydrogenation of DMF to N(CH3)3. Detailed characterizations and DFT calculations reveal that the presence of N-doped layered carbon on the surface of the nano-Cu particles results in higher activation energy barriers during the conversion of DMF to N(CH3)3. Our primary results could promote merging of homogeneous catalysis and heterogeneous catalysis and CO2 recycling.
Highlights
Bridging homogeneous and heterogeneous catalysis is a long-term pursuit in the field of catalysis
Cu was found to be an active catalyst for catalytic hydrogenation of CO2 to methanol[45] and nitrogencontaining ligand was usually used to tuning the catalytic performance of active metals[30,33]
We report a facile methodology for integration of nanoand molecular catalysis via catalytic synthesis of nitrogen doped carbon layers on AlOx supported nano-Cu
Summary
Bridging homogeneous and heterogeneous catalysis is a long-term pursuit in the field of catalysis. We report a facile methodology for integration of nanoand molecular catalysis via catalytic synthesis of nitrogen doped carbon layers on AlOx supported nano-Cu. This synthetic catalytic material, which can be generated in situ by the reaction of CuAlOx and 1,10-Phen in the presence of hydrogen, could be used for controllable synthesis of DMF from dimethylamine and This result well agrees our hypothesis, i.e., N-doped carbon layer can be in situ synthesized on the heterogenous catalyst sample during the reaction.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.