Abstract
The authors introduce an edge detection and recovery framework based on open active contour models (snakelets) to mitigate the problem of noisy or broken edges produced by classical edge detection algorithms, like Canny. The idea is to utilise the local continuity and smoothness cues provided by strong edges and grow them to recover the missing edges. This way, the strong edges are used to recover weak or missing edges by considering the local edge structures, instead of blindly linking edge pixels based on a threshold. The authors initialise short snakelets on the gradient magnitudes or binary edges automatically and then deform and grow them under the influence of gradient vector flow. The output snakelets are able to recover most of the breaks or weak edges and provide a smooth edge representation of the image; they can also be used for higher-level analysis, like contour segmentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.