Abstract

The optimum and efficient way of machining is linked to the choice of the most appropriate cutting tool and cutting tool material. High performance cutting ceramics are characterized by excellent hardness properties at elevated temperatures. For this reason, cutting ceramics meet the requirements for machining with high cutting speeds to increase process productivity. Whereas cutting ceramics are widely used in turning and milling operations, their use in drilling processes, using ceramic insert tipped tools, is limited to larger diameter applications due to design restrictions. Beyond small diameters, solid ceramic tools were of negligible interest for industrial applications owing to their excessive tool manufacturing costs. This paper presents a new tool concept which addresses this challenge and permits a more productive machining process for drilling small diameter holes using ceramics as the cutting material. An active brazed compound drill combines the advantageous properties of ceramics and cemented carbide as the cutting tool material and basic holder material, respectively. The investigations presented here describe the manufacturing chain as well as the application of a compound drill, and compares it to a widely used industrial reference tool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.