Abstract

Four axle vehicles with bogies can adapt the position of the wheels to follow irregularities in the terrain, having an obstacle surpassing ability far greater than conventional 2-axle vehicles. Still, the ability to overcome discrete obstacles on a steep slope is very different depending on the wheel that is facing the obstacle. A possible solution to diminish this variation can be found if the vehicle is able to actively redistribute the load on each wheel. One strategy is to design the suspension mechanism so it can regulate its height, being able to level the chassis. Also, an active torque on the pin join between the bogie and the chassis can be applied with the same goal, adopting a system of active bogies. Both solutions have been parametrically studied in a bi-dimensional multibody model of a 4-axle vehicle with double bogies. The results show an improvement independent of obstacle position and terrain angle when using active bogies. With height regulation, this improvement is limited to the rear bogie wheels, but the obstacle surmounting capacity of the vehicle as a whole can be considerably increased if the optimal regulation point is found. Possible applications for such enhanced vehicles with bogies are performing different tasks in forest areas with obstacles on steep slopes or unstructured terrain exploration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.