Abstract
A high-efficiency active bidirectional electrically-controlled terahertz device based on DMSO-doped PEDOT:PSS with low-power photoexcitation is investigated. Under low-power optical excitation of 30 mW (0.5 W/cm2) and under bias voltages ranging from -0.6 V to 0.5 V, spectrally broadband modulation of THz transmission over a range from -54% to 60% is obtained over the frequency range from 0.2 to 2.6 THz in a MEH-PPV/PEDOT:PSS:DMSO/Si/PEDOT:PSS:DMSO hybrid structure. By considering the combined carrier density characteristics of the proposed device, it is found that the large-scale amplitude modulation can be ascribed to the electrically-controlled carrier density in the silicon layer with the assistance of the p-n junction that consists of the DMSO-doped PEDOT:PSS and silicon. Bidirectional modulation has a larger modulation range and is easier to use in communications applications when compared with unidirectional modulation. These results show great potential for application to the design of active broadband terahertz devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.