Abstract

Multiple studies have explored and reported on using passive sonar scalar pressure fields for both biological and man-made target classification. Here, inclusion of the vector field is considered and evaluated as an input feature in the classification of ship noises. We find that the inclusion of vector field information can significantly improve the understanding of the classification model performance. Based on an analysis of the epistemic and aleatoric uncertainties of probabilistic classification models, using vector field information as additional inputs leads to an <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$F_{1}$</tex-math></inline-formula> score of 0.8 in classification, comparable to scalar pressure field inputs only, but with 39% lower epistemic uncertainty in favor of utilizing the vector field component. Moreover, we verify that a similar conclusion applies to the active learning scenario, where we demonstrate the ability to utilize vector field information and epistemic uncertainty estimates to train a model that achieves an <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$F_{1}$</tex-math></inline-formula> score of 0.8 while using only 23% of the overall data. The ability to decompose uncertainty into an aleatoric and epistemic component leads to additional model explainability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.