Abstract

A new 1.575 GHz active balun with a classic double-balanced Gilbert mixer for global navigation satellite systems is proposed herein. A simple, low-noise amplifier architecture is used with a center-tapped inductor to generate a differential signal equal in amplitude and shifted in phase by 180°. The main advantage of the proposed circuit is that the phase shift between the outputs is always equal to 180°, with an accuracy of ±5°, and the gain difference between the balun outputs does not change by more than 1.5 dB. This phase shift and gain difference between the outputs are also preserved for all process corners, as well as temperature and voltage supply variations. In the balun design, a band calibration system based on a switchable capacitor bank is proposed. The balun and mixer were designed with a 110 nm CMOS process, consuming only a 2.24 mA current from a 1.5 V supply. The measured noise figure and conversion gain of the balun and mixer were, respectively, NF = 7.7 dB and GC = 25.8 dB in the band of interest.

Highlights

  • The balun is a circuit widely used in radio frequency (RF) systems of single gigahertz up to hundreds of gigahertz

  • The balun is used to convert an unbalanced signal to a symmetrical one

  • Due to the use of a double-balanced circuit that requires an RF differential signal at the input, a balun circuit was present in the receiving path before the mixer

Read more

Summary

Introduction

The balun is a circuit widely used in radio frequency (RF) systems of single gigahertz up to hundreds of gigahertz. The use of a balun is required due to the necessity of providing a differential radio frequency signal to the input of a double-balanced mixer.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.