Abstract

We address the problem of planning a path for a ground robot through unknown terrain, using observations from a flying robot. In search and rescue missions, which are our target scenarios, the time from arrival at the disaster site to the delivery of aid is critically important. Previous works required exhaustive exploration before path planning, which is time-consuming but eventually leads to an optimal path for the ground robot. Instead, we propose active exploration of the environment, where the flying robot chooses regions to map in a way that optimizes the overall response time of the system, which is the combined time for the air and ground robots to execute their missions. In our approach, we estimate terrain classes throughout our terrain map, and we also add elevation information in areas where the active exploration algorithm has chosen to perform 3-D reconstruction. This terrain information is used to estimate feasible and efficient paths for the ground robot. By exploring the environment actively, we achieve superior response times compared to both exhaustive and greedy exploration strategies. We demonstrate the performance and capabilities of the proposed system in simulated and real-world outdoor experiments. To the best of our knowledge, this is the first work to address ground robot path planning using active aerial exploration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call