Abstract

We present an efficient spacetime optimization method to automatically generate animations for a general volumetric, elastically deformable body. Our approach can model the interactions between the body and the environment and automatically generate active animations. We model the frictional contact forces using contact invariant optimization and the fluid drag forces using a simplified model. To handle complex objects, we use a reduced deformable model and present a novel hybrid optimizer to search for the local minima efficiently. This allows us to use long-horizon motion planning to automatically generate animations such as walking, jumping, swimming, and rolling. We evaluate the approach on different shapes and animations, including deformable body navigation and combining with an open-loop controller for realtime forward simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.