Abstract
AbstractA structured reaction system in the form of an Ni‐MgO catalyst reduced to nanoscale particle size and coated on a metallic monolith proved to be an active and stable system for methane steam reforming under a steam‐to‐carbon ratio of 1.5 and a temperature of 700 °C. The catalyst‐coated monolith exhibited higher stability and much higher CH4 conversion than the same catalyst in a catalyst particle bed reaction system. The high activity is attributed to the properties of the metal monolith and to the small size of the catalyst particles on the coating, while the stability is ascribed to the NiO‐MgO solid solution formed in the Ni‐MgO catalyst. These results are better than the corresponding ones obtained with a conventional Ni‐Al2O3 catalyst reported previously [1] and comparable to the ones presented in the literature, with the advantage of working under a low steam‐to‐carbon ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.