Abstract

Upgrading ethanol to n-butanol is an attractive way for renewable n-butanol production. Herein, Cu was selected to modify NiMgAlO catalysts for improving ethanol conversion and n-butanol selectivity. Over the optimized 2%Cu-NiMgAlO catalyst, ethanol conversion and n-butanol selectivity were enhanced to 30.0% and 64.2%, respectively, in 200 h time on stream at 523 K. According to physicochemical characterizations and theoretical calculations, the key role of multiple active sites in this reaction was extensively investigated. The plate-like structure of hydrotalcite was maintained over 2%Cu-NiMgAlO catalysts, with an average Ni particle size of ca. 5.4 nm. The presence of Cu species created CuNi alloy sites and Lewis acid-base pairs, and increased hydrogen transfer and condensation reactions, resulting in elevated ethanol conversion and n-butanol selectivity. Additionally, CuNi alloy had a strong interaction with CuNiMgAl oxides, forming homogeneous boundary due to their close ionic radius and lattice matching, and afforded the long time stability in the ethanol to n-butanol reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call