Abstract

This paper proposes a new formulation of the combined Optimal Active and Reactive Dispatch (OARD) problem with Minimum Control Movements (MCM) for the voltage control devices. The main objective of the proposed model is to minimize the total power system operation cost which include fuel cost of generators and switching cost of equipments like tap transformers and shunt capacitors. Practical constraints such as maximum allowable number of switching operation in a day for tap changing transformers and switchable capacitors are taken into consideration. A penalty based approach has been formulated to tackle with the switching costs of adjustable equipments. The problem has been formulated as a nonlinear dynamic optimization problem with the presence of both continuous and discrete control variables and solved using Artificial Bee’s Colony (ABC) algorithm. The approach has been tested on IEEE 30 bus system and the simulation is carried out in MATLAB. In order to verify the effectiveness of the results obtained, both active and reactive power dispatch problems have been solved separately and compared with the proposed approach. Results demonstrate the effectiveness of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call