Abstract

The chapter reviews the history of how STEM educators were able to document more effective learning through assessments that provided quantitative measures of learning in active-learning environments. Key innovators within the field of active learning, peer-based learning and scientific teaching are profiled in detail, starting with leading innovators in the field of physics, were much of the best data validating active learning was first acquired. Eric Mazur’s peer learning techniques, which enable students to discuss problems within large classes and therby “construct knowledge” are described detail. The history of Carl Wieman’s Science Education Initiative is described, with details about his transition from Nobel Prize winning physics researcher into an internationally recognized leader in STEM education. The transformation of physics and astrophysics with active learning and research-based curricula is described with numerous examples for making more exciting and engaging classes through active learning. The development of active learning in Biology is described, including the work in BioQuest, SEAPhages and a new initiative from Jo Handelsman known as TinyEarth. These research-based courses and approaches to active learning and course design are described in detail to give examples of how 21st century research can be brought into the classroom to bring students in active engagement with cutting-edge science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.