Abstract
This article introduced fault-tolerant control (FTC) schemes for over-actuated affine non-linear uncertain systems. The proposed methodologies incorporate two different control allocation (CA) units with high-level nonlinear adaptive sliding mode control (NLASMC) strategy. The first FTC strategy is active that utilizes an online CA unit to effectively manage the redundant actuators towards the chosen flight path in faulty conditions. On the other hand, the second FTC scheme is passive based on the idea of a fixed CA scheme and does not require control-input reconfiguration during the faulty condition. A robust NLASMC law is selected to enforce the state trajectories converges to the sliding manifold despite the uncertainty in the model dynamics and external disturbance effect. The proposed schemes are then applied to the nonlinear F16 aircraft detailed model equipped with thrust vectoring (TV) control. The nonlinear simulations on 6-degree-of-freedom (6-DOF) F16 aircraft are performed under the failure of the aileron, rudder, and elevator. It can be visualized that both schemes performed well, but online CA scheme can cope with more faults and failures combinations in comparison to fixed CA schemes. Furthermore, both FTC approaches performed well when compared to existing methods in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.