Abstract

The need for reliable communications in industrial systems becomes more evident as industries strive to increase reliance on automation. This trend has sustained the adoption of WirelessHART communications as a key enabling technology and its operational integrity must be ensured. This paper focuses on demonstrating pre-deployment counterfeit detection using active 2D Distinct Native Attribute (2D-DNA) fingerprinting. Counterfeit detection is demonstrated using experimentally collected signals from eight commercial WirelessHART adapters. Adapter fingerprints are used to train 56 Multiple Discriminant Analysis (MDA) models with each representing five authentic network devices. The three non-modeled devices are introduced as counterfeits and a total of 840 individual authentic (modeled) versus counterfeit (non-modeled) ID verification assessments performed. Counterfeit detection is performed on a fingerprint-by-fingerprint basis with best case per-device Counterfeit Detection Rate (%CDR) estimates including 87.6% < %CDR < 99.9% and yielding an average cross-device %CDR ≈ 92.5%. This full-dimensional feature set performance was echoed by dimensionally reduced feature set performance that included per-device 87.0% < %CDR < 99.7% and average cross-device %CDR ≈ 91.4% using only 18-of-291 features—the demonstrated %CDR > 90% with an approximate 92% reduction in the number of fingerprint features is sufficiently promising for small-scale network applications and warrants further consideration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.