Abstract

IntroductionWe describe a family with two first-degree cousins who presented with similar phenotypes characterized by neonatal intracranial hemorrhage and subsequent onset of thrombosis. Patients/methodsWe enrolled the two affected patients, five unaffected family members and fifty-five normal controls. Clinical, laboratory, and radiological characteristics of patients were obtained. Exome sequencing was performed for the older affected child. PROC c.811 C>T was genotyped by PCR in patients, family members, and controls. Protein C amidolytic activity and antigen were measured using the STACHROM® protein C kit and ELISAs. To define functional abnormalities caused by the patients' mutation, recombinant wildtype protein C and its mutants R229W, R229Q and R229A were studied. ResultsFor the two cousins, protein C amidolytic activity was 61% and 59% and antigen was 57% and 73% (nl 70–140%), respectively. Exome sequencing revealed a homozygous variant in exon 9 of the protein C (PROC) gene c.811 C>T (R229W). The R229W mutation is located in the calcium binding loop of protein C's protease domain that mediates thrombomodulin interactions. Recombinant R229W-protein C mutant was strikingly defective in rate of activation by thrombin: thrombomodulin, suggesting an in vivo deficit in these children for generation of activated protein C. ConclusionsThese cases emphasize that protein C and activated protein C are important in maintaining the integrity of the brain vascular endothelium in humans. Moreover, routine protein C assays utilizing snake venom protease fail to detect protein C mutants that are resistant to thrombin:thrombomodulin activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call