Abstract

We present a theory of the effect of quantum tunneling on the basic parameter that characterizes the effect of pressure on the rate constant of chemical reactions in a dense phase, the activation volume. This theory results in combining, on the one hand, the extreme pressure polarizable continuum model, a quantum chemical method to describe the effect of pressure on the reaction energy profile in a dense medium, and, on the other hand, the semiclassical version of the transition state theory, which includes the effect of quantum tunneling through a transmission coefficient. The theory has been applied to the study of the activation volume of the model reaction of hydrogen transfer between methyl radical and methane, including the primary isotope substitution of hydrogen with deuterium (H/D). The analysis of the numerical results offers, for the first time, a clear insight into the effect of quantum tunneling on the activation volume for this hydrogen transfer reaction: this effect results from the different influences that pressure has on the competing thermal and tunneling reaction mechanisms. Furthermore, the computed kinetic isotope effect (H/D) on the activation volume for this model hydrogen transfer correlates well with the experimental data for more complex hydrogen transfer reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call