Abstract

Activation of the four separate components of prochymosin (prorennin) at pH 5.0 demonstrated that each zymogen was the precursor to an electrophoretically distinct chymosin (rennin). When the increase in milk-clotting activity with time was analysed, the mechanism of activation of unfractionated prochymosin, individual prochymosin components, and a mixture of the prochymosin fractions at pH 5.0 was shown to follow essentially autocatalytic kinetics. The activation of prochymosin C was completed in 70 h, whereas the other three fractions each required more than 110 h for complete activation under the same conditions. Intact prochymosin, the mixture of four components and prochymosin C were activated at similar rates. Interaction of the individual fractions during activation is suggested to explain the increased rate of the activation for the mixture. Comparison of autocatalytic activation of unfractionated prochymosin purified chromatographically at pH 6.7 and 5.7 demonstrated an increased rate of reaction of the zymogen prepared at the lower pH value. The possibility that prochymosin became susceptible to activation during preparation at pH values slightly below 6.0, as a result of changes in the proportion of the components or a conformational change and exposure of the active site, is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.