Abstract
Graphene monoliths made from graphene oxide colloids by unidirectional freeze-drying method were activated by typical activation processes of CO2 activation, chemical activation using ZnCl2 or H3PO4, and KOH activation. The porosity development of graphene monolith markedly depends on the activation method. The monoliths with highest surface area are obtained by the KOH activation method; only the KOH activation is effective for production of the graphene monolith of which surface area is in the range of 1760–2150m2g−1. The mechanism of the porosity development by KOH activation method is proposed. This work provides a promising route for the bottom-up design of pore width-tunable nanoporous carbons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.