Abstract

Zebrafish provide researchers and students alike with an excellent model of vertebrate nervous system development due to a high degree of conserved developmental mechanisms and transparent embryos that develop in synchrony. In these laboratory exercises, undergraduate students explore cell biological concepts while performing hypothesis-driven novel research utilizing methodologies such as immunofluorescence, confocal microscopy, image analysis, pharmacology, and basic statistics. In the first block of exercises, students perform anti-acetylated tubulin (anti-AT) immunofluorescence, identify spinal tracts and neuronal subtypes, and perform conventional and confocal microscopy. Building on knowledge acquired in the first block of exercises, during the second block, students subsequently perform pharmacological activation of Wnt signaling through lithium chloride treatments, and assess nervous system integrity through anti-AT immunofluorescence. Students perform various quantitative methods and apply statistics to determine outcomes of Wnt activation. In their final laboratory report, students contextualize their results with foundations of molecular mechanisms of nervous system development. In sum, these exercises offer undergraduate students a model of independent research at the graduate level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.