Abstract

While the TRAIL pathway represents a promising therapeutic target in melanoma, resistance to TRAIL-mediated apoptosis remains a barrier to its successful adoption. Since the Wnt/β-catenin pathway has been implicated in facilitating melanoma cell apoptosis, we investigated the effect of Wnt/β-catenin signaling on regulating the responses of melanoma cells to TRAIL. Co-treatment of melanoma cell lines with WNT3A-conditioned media and recombinant TRAIL significantly enhanced apoptosis compared to treatment with TRAIL alone. This apoptosis correlates with increased abundance of the pro-apoptotic proteins BCL2L11 and BBC3, and with decreased abundance of the anti-apoptotic regulator Mcl1. We then confirmed the involvement of the Wnt/β-catenin signaling pathway by demonstrating that siRNA-mediated knockdown of an intracellular β-catenin antagonist, AXIN1, or treating cells with an inhibitor of GSK-3 also enhanced melanoma cell sensitivity to TRAIL. These studies describe a novel regulation of TRAIL sensitivity in melanoma by Wnt/β-catenin signaling, and suggest that strategies to enhance Wnt/β-catenin signaling in combination with TRAIL agonists warrant further investigation.

Highlights

  • The incidence of melanoma has increased in recent decades, and it has become a major cause of cancer related morbidity and mortality

  • Our study demonstrates that activation of the Wnt/β-catenin pathway in melanoma significantly enhances apoptosis triggered by recombinant human TRAIL

  • An alternate marker of apoptosis, cleaved PARP, was measurably elevated when A375 cells were treated with WNT3A conditioned media (CM) in the presence of recombinant human TRAIL (rhTRAIL) compared with controls (Figure 1C)

Read more

Summary

Introduction

The incidence of melanoma has increased in recent decades, and it has become a major cause of cancer related morbidity and mortality. Despite a growing understanding of the molecular pathogenesis of melanoma and the development of promising new therapies, overall survival with advanced/ metastatic disease remains poor [1]. Due to the limited efficacy of standard chemotherapies, intensive research has focused on the development of alternative approaches to promote melanoma cell death. TRAIL can potently induce apoptosis upon ligation of its cognate receptors Death Receptors 4 and 5 (encoded by DR4 and DR5, respectively) in many tumors including melanoma [2,3]. Melanoma cell lines and freshly isolated tumors are often resistant to TRAIL-mediated apoptosis, thereby limiting the potential efficacy of TRAIL agonists [5]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.