Abstract

We report the synthesis and comprehensive study of the electronic structure of a unique series of dinuclear group 5 cyclo-tetraphosphide inverted sandwich complexes. White phosphorus (P4) reacts with niobium(III) and tantalum(III) β-diketiminate (BDI) tert-butylimido complexes to produce the bridging cyclo-P4 phosphide species {[(BDI)(NtBu)M]2(μ-η3:η3P4)} (1, M = Nb; 2, M = Ta) in fair yields. 1 is alternatively synthesized upon hydrogenolysis of (BDI)Nb(NtBu)Me2 in the presence of P4. The trinuclear side product {[(BDI)NbNtBu]3(μ-P12)} (3) is also identified. Protonation of 1 with [HOEt2][B(C6F5)4] does not occur at the phosphide ring but rather involves the BDI ligand to yield {[(BDI#)Nb(NtBu)]2(μ-η3:η3P4)}[B(C6F5)4]2 (4). The monocation and dication analogues {[(BDI)(NtBu)Nb]2(μ-η3:η3P4)}{B(ArF)4}n (5, n = 1; 6, n = 2) are both synthesized by oxidation of 1 with AgBArF. DFT calculations were used in combination with EPR and UV–visible spectroscopies to probe the nature of the metal–phosphorus bonding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call