Abstract

Vascular endothelial growth factor (VEGF) is a secreted cytokine that plays a major role in the formation and maintenance of the hemopoietic and vascular compartments. VEGF and its receptors, VEGFR-1 and VEGFR-2, have been found to be expressed on subsets of normal and malignant hemopoietic cells, but the role of the individual receptors in hemopoiesis requires further study. Using a VEGFR-2 fusion protein that can be dimerized with a synthetic drug, we were able to specifically examine the effects of VEGFR-2 signaling in hemopoietic cells in vivo. Mice transplanted with bone marrow transduced with this inducible VEGFR-2 fusion protein demonstrated expansion of myeloid cells (Gr-1+, CD11b+). Levels of myeloid progenitors were also increased following VEGFR-2 activation, through autocrine and paracrine mechanisms, as measured by clonogenic progenitor assays. VEGFR-2 activation induced expression of GM-CSF and increased serum levels in vivo. Abrogation of GM-CSF activity, either with neutralizing Abs or by using GM-CSF-null hemopoietic cells, inhibited VEGFR-2-mediated myeloid progenitor activity. Our findings indicate that VEGF signaling through VEGFR-2 promotes myelopoiesis through GM-CSF-dependent and -independent mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call