Abstract
The neurotrophins (NTs) play a key role in neuronal survival and maintenance. The TRK (tropomyosin-related kinase) tyrosine kinase receptors (TRKA, TRKB, TRKC) are high affinity receptors for NTs. There is increasing data demonstrating an important role of the TRK family in cancer initiation and progression. NTs have been known for many years to promote chemotaxis, maturation, and survival of mast cells. However, the role of NT signaling in the pathogenesis of mastocytosis is not well understood. In this study, we demonstrate that activation of TRKA by its ligand nerve growth factor (NGF) is potent to trigger a disease in mice with striking similarities to human systemic mastocytosis (SM). Moreover, activation of TRKA by NGF strongly rescues KIT inhibition-induced cell death of mast cell lines and primary mast cells from patients with SM, and this rescue effect can be efficiently blocked by entrectinib (a new pan TRK specific inhibitor). HMC-1 mast cell leukemia cells that are resistant to KIT inhibition induced by TRKA activation show reactivation of MAPK/ERK (extracellular signal-regulated kinase) and strong upregulation of early growth response 3 (EGR3), suggesting an important role of MAPK-EGR3 axis in the development of resistance to KIT inhibition. Targeting both TRK and KIT significantly prolongs survival of mice xenotransplanted with HMC-1 cells compared with targeting KIT alone. Thus, these data strongly suggest that TRKA signaling can improve neoplastic mast cell fitness. This might explain at least in part why treatment with KIT inhibitors alone so far has been disappointing in most published clinical trials for mastocytosis. Our data suggest that targeting both KIT and TRKs might improve efficacy of molecular therapy in SM with KIT mutations.
Highlights
Mastocytosis is one subcategory of myeloid neoplasms as defined by the 2016 World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia [1]
To investigate the role of TRKA signaling in the pathogenesis of mastocytosis and acute leukemia, 19 C57BL/6J mice were transplanted with retrovially gene-modified primary hematopoietic stem/progenitor cells (TRKA/nerve growth factor (NGF) = 7, TRKA = 6, NGF = 6) in two independent experiments (Figure 1A)
These data strongly suggest that activation of TRKA by NGF is important for the development of mastocytosis
Summary
Mastocytosis is one subcategory of myeloid neoplasms as defined by the 2016 World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia [1]. KIT inhibitors showed very good inhibitory effects on mast cells in vitro, treatment with KIT inhibitors alone so far has been disappointing in most published clinical trials for mastocytosis [2, 5, 7,8,9], probably due to development of resistance to kinase inhibitors [5, 10]. Even in the recently published study demonstrating therapeutic benefit in some patients with advanced SM by targeting KIT, the overall survival is still not satisfying (46% at 3 years) [7]. These findings underscore the need to develop more efficient treatment strategies for patients with SM
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.