Abstract

Tolerogenic dendritic cells in the tumor microenvironment can inhibit the generation and maintenance of robust antitumor T cell responses. In this study, we investigated the effects of local delivery of CD40L by tumor-reactive CD8(+) T cells on dendritic cell activation and antitumor T cell responses in the TRAMP model. To increase the immunostimulatory signal, CD40L was engineered, by deleting the majority of the cytoplasmic domain, to increase its levels of expression and duration on the surface of CD8(+) T cells. Tumor-reactive CD8(+) T cells expressing the truncated form of CD40L stimulated maturation of dendritic cells in vitro and in the prostate draining lymph nodes in vivo. Following dendritic cell maturation, a significantly higher fraction of adoptively transferred, tumor-reactive (reporter) CD8(+) T cells was stimulated to express IFN-gamma and infiltrate the prostate tissue. The antitumor CD8(+) T cell response was further enhanced if TRAMP mice were also immunized with a tumor-specific Ag. These findings demonstrate that augmented T cell responses can be achieved by engineering tumor-reactive T cells to deliver stimulatory signals to dendritic cells in the tumor microenvironment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.