Abstract

The Wnt/β-catenin signaling pathway, also known as the canonical Wnt pathway, plays a role in cell proliferation and differentiation in several tissues/organs. It has been recently described in humans a relationship between type 2 diabetes (T2DM) and mutation in the gene encoding the transcription factor TCF7L2 associated to the Wnt/β-catenin pathway. In the present study, we demonstrated that hyperplastic pancreatic islets from prediabetic mice fed a high-fat diet (HFD) for 60 d displayed nuclear translocation of active β-catenin associated with significant increases in protein content and gene expression of β-catenin as well as of cyclins D1, D2 and c-Myc (target genes of the Wnt pathway) but not of Tcf7l2 (the transcription factor). Meanwhile, these alterations were not observed in pancreatic islets from 30 d HFD-fed mice, that do not display significant beta cell hyperplasia. These data suggest that the Wnt/β-catenin pathway is activated in pancreatic islets during prediabetes and may play a role in the induction of the compensatory beta cell hyperplasia observed at early phase of T2DM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.