Abstract

Small conductance Ca(2+)-activated K(+) (SK) channels sense intracellular Ca(2+) concentrations via the associated Ca(2+)-binding protein calmodulin. Structural and functional studies have revealed essential properties of the interaction between calmodulin and SK channels. However, it is not fully understood how the binding of Ca(2+) to calmodulin leads to channel opening. Drawing on previous biochemical studies of free calmodulin using lanthanide ions as Ca(2+) substitutes, we have used the lanthanide ion, Tb(3+), as an alternative ligand to study the activation properties of SK channels. We found that SK channels can be fully activated by nanomolar concentrations of Tb(3+), indicating an apparent affinity >100-fold higher than Ca(2+). Competition experiments show that Tb(3+) binds to the same sites as Ca(2+) to activate the channels. Additionally, SK channels activated by Tb(3+) demonstrate a remarkably slow deactivation process. Comparison of our results with previous biochemical studies suggests that in the intact SK channel complex, the N-lobe of calmodulin provides ligand-binding sites for channel gating, and that its ligand-binding properties are comparable to those of the N-lobe in isolated calmodulin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call