Abstract

Neurons synthesizing thyrotropin-releasing hormone, substance P and serotonin in the medullary caudal raphe nuclei project to the dorsal vagal complex and play a role in the central vagal regulation of gastric function. Neurons in the parapyramidal region in the ventral medulla share similar biochemical coding and projections as those in the caudal raphe nuclei. The role of the parapyramidal region in the autonomic regulation of gastric acid secretion was investigated in urethane-anesthetized rats. Unilateral microinjection of kainate into the parapyramidal region at 10, 15 and 20 ng induced a dose-related stimulation of gastric acid secretion (net increases: 22.2±11.2, 40.5±8.5 and 89.8±19.4 μmol/60 min, respectively), while injection of vehicle had no effect (net change: −0.1±1.4 μmol/60 min). Time-course studies showed a nine-fold peak increase over basal at 30 min after parapyramidal injection of kainate (20 ng) and acid secretion returned to basal level at 70 min. Microinjections of kainate (15–20 ng) outside the parapyramidal region or into the parapyramidal region in vagotomized rats had no effect. Exposure to cold (4°C) for 2 h, which is known to induce vagally mediated gastric secretory and motor responses through medullary thyrotropin-releasing hormone pathways, increased the number of Fos-positive cells in the caudal, middle and rostral parts of the parapyramidal region to 4.3±0.4, 9.4±0.9 and 18.4±1.6/section, respectively, compared with 0.1±0.1, 0.1±0.0 and 0.7±0.6/section, respectively, in rats maintained at room temperature. Most of the Fos-labeled cells co-expressed pro-thyrotropin-releasing hormone messenger RNA signal and/or were serotonin immunoreactive. These data show that chemical activation of neurons in the parapyramidal region results in a vagal-dependent stimulation of gastric acid secretion and that acute cold exposure activates parapyramidal neurons containing pro-thyrotropin-releasing hormone and/or serotonin, suggesting a potential role of the parapyramidal region, in addition to the caudal raphe nuclei, as medullary sites involved in the vagal regulation of gastric function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.