Abstract

Arsenic trioxide (As2O3) is both the most prevalent, naturally occurring inorganic arsenical threatening human health and an efficient therapeutic for acute promyelocytic leukemia. Regretfully, As2O3-treated cancer patients often suffer from hepatotoxicity. While effective antioxidant and anticarcinogenic actions of allicin have previously been demonstrated, studies indicating how allicin affects As2O3-induced hepatotoxicity and arsenic accumulation are lacking. Our study, for the first time, elaborates potential details of the hepatoprotective mechanisms of allicin against As2O3-induced liver injury. Wistar rats were administrated allicin (30mg/kg) 1h before As2O3 (3mg/kg) by daily gavage for 2weeks. Our results indicate that allicin ameliorated As2O3-induced liver dysfunction, oxidative stress, and arsenic accumulation in the liver. Meanwhile, allicin decreased NF-κB level and upregulated expression of proteins reduced by As2O3 including nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1, nicotinamide adenine dinucleotide phosphate:quinone oxidoreductase 1, and Krüppel-like factor 9 (KLF9). In addition, allicin promoted B cell lymphoma-extra large expression and suppressed B cell lymphoma-2-associated X protein levels regulated by As2O3. However, neither allicin nor As2O3 affected cytochrome P450 2E1 mRNA expression. In conclusion, allicin attenuated As2O3-induced hepatotoxicity by activating the Nrf2 signaling pathway involving KLF9 to inhibit oxidative stress and apoptosis. Our findings elucidate a detailed mechanism by which allicin provides protection against As2O3-induced liver injury and support its potential role as an adjunctive therapy for patients suffering from chronic arsenic exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call