Abstract

Many usnic acid-containing dietary supplements have been marketed as weight loss agents, although severe hepatotoxicity and acute liver failure have been associated with their overuse. Our previous mechanistic studies revealed that autophagy, disturbance of calcium homeostasis, and ER stress are involved in usnic acid-induced toxicity. In this study, we investigated the role of oxidative stress and the Nrf2 signaling pathway in usnic acid-induced toxicity in HepG2 cells. We found that a 24-h treatment with usnic acid caused DNA damage and S-phase cell cycle arrest in a concentration-dependent manner. Usnic acid also triggered oxidative stress as demonstrated by increased reactive oxygen species generation and glutathione depletion. Short-term treatment (6h) with usnic acid significantly increased the protein level for Nrf2 (nuclear factor erythroid 2-related factor 2), promoted Nrf2 translocation to the nucleus, up-regulated antioxidant response element (ARE)-luciferase reporter activity, and induced the expression of Nrf2-regulated targets, including glutathione reductase, glutathione S-transferase, and NAD(P)H quinone oxidoreductase-1 (NQO1). Furthermore, knockdown of Nrf2 with shRNA potentiated usnic acid-induced DNA damage and cytotoxicity. Taken together, our results show that usnic acid causes cell cycle dysregulation, DNA damage, and oxidative stress and that the Nrf2 signaling pathway is activated in usnic acid-induced cytotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.