Abstract

Biological effects of many hormones and cytokines are mediated through receptor-associated Jak tyrosine kinases and cytoplasmic Stat transcription factors, including critical physiological processes such as immunity, reproduction, and cell growth and differentiation. Pharmaceuticals that control Jak-Stat pathways are therefore of considerable interest. Here we demonstrate that a single Jak-Stat pathway can be activated by aurintricarboxylic acid (ATA), a negatively charged triphenylmethane derivative (475 Da) with anti-apoptotic properties. In prolactin (PRL)-dependent Nb2 lymphocytes, ATA sustained cell growth in the absence of hormone and mimicked rapid PRL-induced tyrosine phosphorylation of Jak2 and activation of Stat5a and Stat5b with tyrosine phosphorylation, heterodimerization, DNA binding, and induction of the Stat5-regulated pim-1 protooncogene. ATA also mimicked PRL activation of serine kinases ERK1 and ERK2. However, unlike PRL, ATA did not regulate Stat1 or Stat3. ATA also did not affect Jak3, which is activated in these cells by interleukin-2 family cytokines. Although the mechanism and specificity by which ATA activates Jak2, Stat5, and ERKs in Nb2 cells are still unclear, the present study demonstrates that certain hormone or cytokine effects on Jak-Stat pathways can be discretely imitated by a low molecular weight, non-peptide pharmaceutical. The results are also consistent with Stat5 involvement in lymphocyte growth and survival.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.