Abstract

The process of producing active vacancies on a hydrogen-terminated diamond surface is the most important rate-limiting stage in CH4/H2 and CH4/H2/CO2 atmospheres. Hydrogen atom and the hydroxyl group can bone to the hydrogen atom on the diamond surface and create an active vacancy. Density functional theory (DFT) was used to study the extraction reaction by two reactants both hydrogen atom and the hydroxyl group. The result indicated that the hydroxyl group could reduce the energy required for diamond surface activation. What is more, the activation rate of the surface by the hydroxyl group was livelier at low temperature, while the activation rate of the hydrogen atom predicts on the contrary. The scanning electron microscope (SEM) and Raman spectra demonstrated that the introduction of CO2 in the CH4/H2 atmosphere could reduce the deposition temperature and raise the deposition rate at low temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call