Abstract

l-Glutamate is a multifunctional amino acid involved in taste perception, intermediary metabolism, and excitatory neurotransmission. In addition, recent studies have uncovered new roles for l-glutamate in gut-brain axis activation and energy homeostasis. l-Glutamate receptors and their cellular transduction molecules have recently been identified in gut epithelial cells. Stimulation of such l-glutamate receptors by luminal l-glutamate activates vagal afferent nerve fibers and then parts of the brain that are targeted directly or indirectly by these vagal inputs. Notably, 3 areas of the brain—the medial preoptic area, the hypothalamic dorsomedial nucleus, and the habenular nucleus—are activated by intragastric l-glutamate but not by glucose or sodium chloride. Furthermore, the chronic, ad libitum ingestion of a palatable solution of monosodium l-glutamate (1% wt:vol) by rats has also been found to reduce weight gain, fat deposition, and plasma leptin concentrations compared with rats that ingest water alone. No difference in food intake was observed. Such effects may also be vagally mediated. Together, such findings contribute to the growing knowledge base that indicates that l-glutamate signaling via taste and gut l-glutamate receptors may influence multiple physiologic functions, such as thermoregulation and energy homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.